Бронежилет из паутины. Жилеты спицами

Бронежилет из паутины. Жилеты спицами

Самые прочные бронежилеты можно было бы изготовить из паутины, которая обладает особой прочностью и эластичностью, утверждают американские ученые, мнение которых приводит газета New York Times, передает РИА « Новости». Эксперты из университета Калифорнии, которые посвятили изучению своего предмета десятки лет, считают, что пауки производят настолько прочный шелковый материал, что изготовленные из него кабели по своим качествам опережали бы аналогичные продукты из ценных металлов.

Паутина более чем на 50% состоит из полимеризованного белка и рвется лишь при растяжении на 200-400%. Пауки часто используют паутинный шелк повторно, съедая нити, поврежденные дождем, ветром или насекомым. Переваривается он при помощи специальных ферментов. Каждый паук способен производить пять различных видов паутины (семь, по версии российской арахнологии). Однако наладить промышленный выпуск природной « сетки» в США до сих пор так и не удалось. Главная причина, которая мешает пустить производство паутины на поток, - в том, что эти членистоногие - хищники, в отличие от поставленных на службу человеку шелкопрядов. Потенциальное фермерское хозяйство по разведению пауков и сбору паутины столкнется с проблемой поставки кормов - различных насекомых. В противном случае пауки начинают пожирать друг друга. Американские ученые теперь пытаются раскрыть секрет производства паутины, чтобы создать ее искусственный аналог.

В статье ничего не говорится о вегетарианцах под названием Багира Киплинга - вид пауков-скакунов, которые распространены в Центральной Америке на территории Мексики, Белиза, Коста-Рики и Гватемалы. Они обитают на акациях, питаясь преимущественно растительной пищей. Может быть, они станут конкурентами шелкопряда, который, впрочем, отличается более трудолюбивым нравом по сравнению с восьминогим хищником.

«Порох / Явил свой дымный лик и разметал / Доспехи рыцарей, / Как ржавое железо»,– писал о появлении огнестрельного великий Максимилиан Волошин в своей трагедии материальной культуры «Путями Каина». Действительно, с широким внедрением пороха, пуль и снарядов тогдашние средства индивидуальной защиты мгновенно устарели и покинули театры военных действий. С тех пор в буквальном смысле слова поколения учёных и инженеров всего мира бились над тем, чтобы создать новые материалы, способные защитить солдат от «огнестрела». Но только по мере освоения нанотехнологий человечество вплотную приближается к созданию лёгких и эффективных средств индивидуальной защиты (СИЗ).

Чудесный оранжевый гель

О том, что британская и американская армии (а также армии других стран – участниц блока НАТО) вот-вот перейдут на новые защитные боевые шлемы, в которые будет добавлен инновационный вязкий наногель, способный мгновенно поглощать импульс силы, то есть служить надёжной и лёгкой бронёй, самые разные СМИ говорят и пишут вот уже несколько лет подряд. Известен даже цвет этого «чудо-геля» – оранжевый, по всей видимости из-за того, что так он окрашен в презентационном ролике, гуляющем по сети Интернет и служащем источником вдохновения для журналистов, пишущих про нанотехнологии и разные научные открытия в рубриках «Калейдоскоп» или «Это любопытно».

Определённая доля правды в этих статьях, разумеется, есть. Действительно, изобретённый Ричардом Палмером, сотрудником компании Blue Divine Ltd., вязкий наноматериал при ударе ножа, пули или осколка мгновенно переходит в твёрдое состояние и образует на пути смертельного металла непробиваемый заслон. Этот фазовый переход происходит меньше чем за одну миллисекунду, что и позволяет создать защиту от различных механических воздействий. Принцип действия новой брони основан на свойствах «умных молекул», которые мгновенно соединяются в блоки при ударном воздействии, а по окончании удара расцепляются, возвращая материал в исходное вязкое состояние.

Эксперты отмечают, что т. н. неньютоновские жидкости, вязкость которых зависит от градиента скорости попавшего в них предмета, сами по себе для науки не являются. Например, так ведёт себя смесь кукурузного крахмала и воды. При медленном движении молекулы легко скользят друг вдоль друга, а при энергичном воздействии сцепляются, поглощая при этом кинетическую энергию. Кстати, именно это свойство отмечал в своём известном юмористическом рассказе «Бритва в киселе» писатель Аркадий Аверченко – современник вышеупомянутого Максимилиана Волошина.

Как говорится, кто же знал, что технологии для создания новой лёгкой брони, способной защитить личный состав от огне­стрельного оружия, настолько близки... А ведь долгое время были попытки создания именно традиционных, стальных доспехов. И если каски в ХХ веке всё-таки показали определённую эффективность в ходе боевых действий – защиту от шальных пуль на излёте и осколков,– то различные переносные бронещитки и тем более стальные кирасы лишь сковывали движения личного состава, делая его удобной мишенью и практически не защищая от огня противника.

Лёгкая каска, мягкий жилет

Увы, действительность оказалась далека от теории – может быть, не так, как запуск первого спутника от колонизации Марса, но доработки «чудо-гель» требует ещё серьёзной. И хотя защитный мягкий пластичный полимер, твердеющий при силовом воздействии, уже используется в спорте, например в костюмах горнолыжников, которые развивают высокие скорости, однако от пуль «умные молекулы» сами по себе спасать не научились.

Как говорится, стрельбой шариками из духового ружья по опытным образцам продукции хорошо заниматься на полигоне, а до боевой обстановки и серийного производства материал ещё должен «дорасти». Так что те же британцы пошли по упрощённому пути – хотя разработанный ими гель D30 для защитных шлемов сам по себе остановить пулю не может, использование его в сочетании с другими материалами позволит не только повысить надёжность каски, но и облегчить её вес, что немаловажно.

Точно по тому же пути пошли российские и американские инженеры: и у нас, и за океаном работают над новой конструкцией бронежилета с применением элементов «жидкой брони». Если говорить упрощённо, новый бронежилет состоит из особой ткани, пропитанной тем самым защитным гелем. В отличие от стандартных бронежилетов, сила от удара пули или ножа в «жидкой броне» не сосредотачивается в одном месте, а распределяется по поверхности. Это позволяет если не избежать, то хотя бы уменьшить «побочный эффект» в виде гематом (синяков), остающихся на теле от попадания пули под традиционным кевларовым бронежилетом.

Кстати, обработав защитным гелем кевларовую ткань, инженеры смогли значительно улучшить её защитные характеристики: гель при ударе, помимо собственной жёсткости, дополнительно скрепляет отдельные волокна ткани, мешая им разойтись под действием проникающего предмета. Что особенно важно, это позволяет существенно улучшить сопротивляемость бронежилета не только огнестрельному, но и холодному оружию – ведь, как известно, традиционные бронежилеты защищают от острых колющих предметов значительно хуже, чем от пуль.

Кроме того, с помощью новой технологии можно эффективно защищать не только грудь, спину и голову, но также руки и ноги солдат. Обработанная инновационным гелем ткань в обычных условиях остаётся гибкой и практически не стесняет движений человека, однако под действием энергии пули или удара ножом она твердеет – превращается в броню.

В России разработку «жидкой брони» с 2006 года курирует екатеринбургский Венчурный фонд ВПК, который планирует не останавливаться на опытных образцах, а вывести этот продукт на рынок. И уже в 2007 году специалисты провели первые испытания отечественного защитного наногеля. Российские инженеры рассчитывают использовать «жидкую броню» не только для производства СИЗ (бронежилетов, шлемов и др.), но и для усиления защиты любых других объектов – вертолётов, катеров, авто­мобилей. Вообще, сфера применения новой технологии огромна. Ведь «жидкая броня» применима не только в военных целях, но и в гражданских – для спасателей, пожарных, частных охранных служб, в горнодобывающей и аэрокосмической отраслях...

Российский «бронегель» состоит из жидкого наполнителя – полиэтиленгликоля и твёрдых кварцевых наночастиц, которые при попадании пули мгновенно схватываются, превращаясь в твёрдый композитный материал. Работает отечественный гель только со специальной тканью, состав которой держат в секрете. Британские специалисты, в свою очередь, разработали гель, совместимый с обычными кевларовыми нитями,– и это не лучше и не хуже, просто другой подход к решению проблемы.

Свой вариант «жидкой брони» разработал и испытал московский Научно-ис­следовательский институт Стали совместно с Институтом прикладных нанотехнологий из подмосковного Зеленограда. Специалисты обработали слои стандартной баллистической ткани гелиевой композицией на основе фтора с наночастицами окиси корунда.

Золотой панцирь

К нанотехнологиям можно отнести и ещё одну отечественную разработку для СИЗ. Так, ещё в 2011 году российская компания «Каменскволокно», производящая химические волокна различного назначения, представила на выставке Milipol 2011 в Париже арамидное волокно AuTx, получившее название «золотой текстиль». Волокно AuTx было разработано совместно с британской компанией Alchemy Technologies. Его основу составляет волокно гетероциклического сополимера арамидной семьи. При этом динамическая прочность AuTx вдвое больше, чем у других подобных волокон и нитей. Таким образом, бронежилеты, выполненные из «золотого текстиля», весят вдвое меньше аналогичных средств защиты, изготовленных с применением традиционного кевлара. Жаль, что первыми заинтересовались разработками «Каменскволокна» зарубежные потребители. Более того, образцы средств индивидуальной защиты, выполненные из AuTx, прошли боевые испытания в спецподразделениях США и Великобритании, дислоцированных в Афганистане. Правда, российское военное руководство всё-таки планирует в течение ближайших 15 лет создать принци­пиально новое вооружение на основе на­но­технологий для борьбы с радиационным, химическим и биологическим терроризмом.

Известно, что AuTx устойчив к огню и, следовательно, может применяться при производстве одежды для пожарных. По заявлению разработчиков, AuTx не только практически не подвержен старению, но и наоборот, прочность его волокон при хранении даже увеличивается, хотя и незначительно (примерно на 1% за 5 лет).

При производстве волокна AuTx подвергаются воздействию особого реагента, позволяющего «золотому текстилю» практически не терять своих свойств при контакте с водой, маслом и другими жидкостями. Для сравнения: традиционный кевлар теряет свою прочность под воздействием солнечных лучей и при намокании. При нагревании кевлар становится хрупким, а его хранение при высокой температуре ускоряет старение материала.

Офицеры американской армии и полицейские в защитных целях носят тяжелые несгибаемые бронежилеты, способные обеспечить достаточный уровень защиты. Однако шелк мадагаскарского паука в 10 раз крепче кевлара, материала, использующегося в большинстве бронежилетов.

Если бы можно было изобрести способ производства паучьего шелка в промышленном масштабе, тогда бы бронежилеты изготавливались из легковесного сверхпрочного материала, способного надежно защитить тело от пуль и шрапнели.

По прошествии нескольких десятилетий с того момента когда были проведены первые опыты в этой области, у ученых есть, наконец-то, реальная возможность найти способ изготовить защитный бронежилет из шелка паука.

Помимо того, что такая идея выглядит весьма инновационной, это еще и подразумевает, что солдаты и офицеры полиции будет экипированы ультралегкими гибкими и сверхпрочными бронежилетами, способными эффективно противостоять пулям, попадающим в корпус тела. Сейчас американские солдаты носят тяжелые громоздкие, стесняющие движения средства защиты. Обычно это крайне тяжелые жилеты с, как минимум, двумя керамическими пластинами, призванными защитить от осколков гранат и пуль верхнюю часть тела военнослужащего.

Принцип действия сплошной брони заключается в том, что сила противодействия ее поверхности равносильна силе удара пули. Однако чем большую защиту предоставляет броня, тем тяжелее и неудобнее будет жилет. Самый легкий бронежилет способен защитить лишь от снаряда мелкого калибра, сила удара которого сравнительно низка. Уровень защиты сплошной брони может быть увеличен посредством добавления дополнительных защитных пластин.

Несмотря на то, что личные средства защиты очень важны, тем не менее, в инструкциях для полицейских довольно часто появляются напоминания о том, что офицер без бронежилета в 14 раз чаще рискует погибнуть от выстрела. Полицейским приходится выбирать между маневренностью, свободой в движениях и возможностью быть сраженным пулей.

Солдаты, находясь в зонах военных действий, ежедневно ходят в бронежилетах, полицейские же в менее рисковых ситуациях часто предпочитают удобство и легковесность брони средней степени защищенности. Пуля, столкнувшись с поверхностью бронежилета, оставляет на теле так называемую запреградную травму, распределяя силу удара по все плоскости тела, вследствие чего она не фокусируется в одной точке. Мягкая тканевая бронезащита замедляет полет пули или шрапнели благодаря наличию нескольких слоев, либо переплетенных волокон, которые действуют, на манер рыболовецкой сети, паутины паука.

Легковесная гибкая броня с высоким уровнем защищенности, присущим бронежилетам солдат спецвойск, до недавнего времени была только мечтой.

Считается, что ткань кевлара для мягкой бронезащиты, выпускаемая компанией DuPont, в пять раз прочнее стали, такой материал широко используется полицейскими. Однако прочность шелка паука все-таки выше его искусственных аналогов, и на протяжении нескольких десятилетий ученые предпринимали попытки создать броню в стиле человека паука.

Виток за витком исследователи пытаются собрать паучью паутину, которая легче по весу и в то же время в три раза эластичнее кевлара, но и в пять раз прочнее промышленной стали. Несмотря на размер и вес, шелк паука обладает природными способностями противостоять мощной силе удара.

В прошлом году группа немецких ученых из Гейдельбергского института теоретических наук проводили исследования с целью определить составные части того механизма, благодаря которому паучий шелк становится столь крепким. Есть два ключевых этапа производства ткани из шелка паука: мягкий вязкий гель, вначале содержится в брюшной полости паука, затем он превращается в очень прочную нить, когда гель выходит из тела паука. Результаты исследования, опубликованные на страницах Biophysical Journal, указывают на то, что компоненты, которые придают шелку эластичность, также способствуют тому, что нить становится чрезвычайно крепкой. И хотя использование в своих целях свойств шелка паука на первый взгляд не представляется посильной задачей, тем не менее, заветная цель все еще весьма далека, и на пути к ней не обходится без серьезных затруднений.

Среди вызовов, стоящих перед учеными, называют необходимость определить геном идеального шелка паука, а также найти способ, который бы позволил синтезировать белковый элемент, производящий шелк, а также следует определить метод производства такого белкового элемента в необходимых количествах.

В течение довольно длительного времени предметом исследования был представитель наиболее опасных паукообразных - черна вдова, чья паутина является исходным материалом брони, прочность которой выше кевлара и стали.

Однако при разведении пауков исследователи столкнулись с одной проблемой: пауки не могли ужиться друг с другом и беспрерывно враждовали, не производя достаточного количества материала. В 2007 году ученые из Университета Калифорнии объявили о том, что они раскрыли тайну генома шелка черной вдовы и в дальнейшем намеревались ввести искусственно созданные гены в томатные растения, что, по их мнению, могло привести к тому, что томаты производили бы шелк пауков.

Растения томатов, зерновые, бактерии, дрожжи и даже козы - все эти средства, наряду с техническими средствами, в определенное время использовались в попытке трансформировать гель пауков в твердые нити.

Тутовые шелкопряды производят тонкий шелк, но у них имеется огромный природный потенциал произвести до одного километра шелка за несколько дней. В 1999 году таиландский Технологический Институт Раджамангала сообщил, что был создан бронежилет, в котором использовалась обычная паутина, для производства которой не требуется больших затрат. Во время испытаний 16 слоев шелка были способны остановить 9-миллиметровую пулю, и жилеты, изготовленные из такого материала, успешно обеспечивали защиту от выстрелов, произведенных из оружия калибра.22.

Авторами недавнего достижения в этой сфере являются представители Университета Вайоминга, результаты их исследования появились на страницах издания «Proceedings of the National Academy of Sciences». Согласно опубликованной информации, исследователям удалось преуспеть по части генетического модифицирования тутовых шелкопрядов, которое было предпринято с целью разработки микса шелка червя и паука, который был бы столь же крепок, что и шелк паука.

Есть мнение, что Святой Грааль бронежилета из паучьего шелка удастся найти тогда, когда будет раскрыта тайна генома мадагаскарского паука, чья паутина, как считается, в 10 раз крепче, чем кевлар, такое открытие позволило бы построить заводы по производству шелка. Шелк мадагаскарского паука считается самым прочным материалом, который существует на планете, он в 100 раз крепче любого другого шелка.

Этот паук был обнаружен на Мадагаскаре в прошлом году, диаметр окружности его паутина может достигать 25 метров, такой материал чрезвычайно эластичен и его способность противостоять силе удара пули в три раза превышает аналогичный показатель кевлара.

Парашюты, воздушные подушки, спортивная одежда, рыбацкие сети - список потенциально возможного применения шелка паука можно продолжить.

На данный момент проводятся исследования на предмет его использования в медицинских целях - в хирургических нитках для швов, прочных искусственных сухожилиях и связках, а также в качестве дополнительных соединений для восстановления нервных тканей, в которых используется упругость шелка.

Резюмирую все известные на данный момент сведения о шелке мадагаскарского паука, можно сказать о том, что применение такого материала в полицейских бронежилетах станет революцией в сфере экипировки представителей правоохранительных органов.

Американские военные разрабатывают специальное устройство, которое способно останавливать кровотечение (включая внутреннее).

Внутренние кровотечения, как следствия ранения, являются основной причиной смерти солдат на поле боя. Чтобы выиграть время для подхода медиков предусматривается использовать специальный бандаж со встроенным ультразвуковым прижигателем.
Устройство способно так сфокусировать ультразвуковые волны, чтобы запечь сосуды и остановить кровотечение даже глубоко внутри тканей тела.

Бронежилеты из паутины

Самые прочные бронежилеты можно было бы изготовить из паутины, ведь она обладает особой прочностью и эластичностью, утверждают американские ученые из университета Калифорнии.

Пауки производят настолько прочный шелковый материал, что изготовленные из него кабели по своим качествам опережали бы аналогичные из ценных металлов.

Паутина более чем на 50% состоит из полимеризованного белка и рвется лишь при растяжении на 200-400%. Пауки часто используют паутинный шелк повторно, съедая нити, поврежденные дождем, ветром или насекомым. Переваривается он при помощи специальных ферментов. Каждый паук способен производить несколько различных видов паутины

Последние модели бронежилетов изготавливаются из ткани «кевлар». Однако прочность натуральной паутины все-таки в 3 раза эластичнее кевлара и в пять раз прочнее промышленной стали.

В 1999 году специалисты Технологического Института Раджамангала в Таинланде сообщили, что был создан бронежилет, в котором использовалась паутина обычных пауков. 16 слоев материала из этой паутины были способны остановить 9-миллиметровую пулю, а жилеты из него успешно обеспечивали защиту от выстрелов из оружия 22 калибра.

Долгое время предметом исследования были представители наиболее опасных паукообразных – пауки «черна вдова», чья паутина прочнее, чем у обычных пауков.


Однако последнее время особо прочной считается паутина мадагаскарского паука Дарвина, по ударной вязкости она в 10 раз прочнее кевлара.

Однако наладить промышленный выпуск искусственной паутины до сих пор так и не удалось.
Главная причина в том, что пауки– хищники и могут начать пожирать друг друга.
Американские ученые теперь пытаются создать ее искусственный аналог.




Знаете ли вы?

Преимущества Декартовской системы координат

Знаменитый английский физик Уильям Томсон (лорд Кельвин) был долгие годы профессором в университете в Глазго.
Во время одной его лекции какой-то студент шаркал ногами и мешал этим Томсону. Ученый решил положить этому конец.
Он позвал служителя и сказал ему на ухо несколько слов. Тот вышел из аудитории и через десять минут вернулся с сантиметром в руках.
Отмерив определенное расстояние вдоль одной стены, он отметил это место, затем он измерил другое расстояние на перпендикулярной стене, и сказал что-то Томсону. «Мистер Смит, это вы шумели. Оставьте аудиторию, - сказал Томсон. Смит покраснел и вышел.
Оказалось, что служитель, получив поручение, отправился под деревянный помост, служивший полом аудитории, и, установив, где происходил шум, измерил расстояние этого места от обеих стен. Затем эти измерения были повторены уже на глазах у студентов, и места помехи профессору была установлена.
«Преимущества декартовской системы координат,- добавляет знаменитый английский химик Рамзай, бывший свидетелем этой сцены, - были продемонстрированы экспериментально, а вместе с тем были удовлетворены и требования справедливости.


Самое обсуждаемое
Как из бумаги сделать книжку своими руками? Как из бумаги сделать книжку своими руками?
Изготовление поделок из монет Как сделать корабль из монет своими руками Изготовление поделок из монет Как сделать корабль из монет своими руками
Цветы из бумаги своими руками: мастер-класс для начинающих Цветы из бумаги своими руками: мастер-класс для начинающих


top